Развертывание системы визуального контроля стала первым выбором для производственных предприятий для преобразования контроля качества и улучшения качества продукции. Однако предприятия, которые не знакомы с оборудованием визуального контроля, часто имеют определенные недопонимания относительно ценности оборудование для визуального контроля при выборе. Сегодня мы подведем итоги нескольких типов проблем, с которыми сталкиваются предприятия, как выбрать машины визуального контроля и системы.
Вопрос: Может ли одна машина проверять все продукты?
Нет, это невозможно. Если компания хочет приобрести комплект оборудования для визуального контроля с использованием искусственного интеллекта для тестирования всей своей продукции, на данном этапе это невозможно.
Хотя оборудование для визуального контроля с использованием искусственного интеллекта совместимо, к нему предъявляется ряд требований к спецификациям продукции. В настоящее время многие компании-производители имеют широкий ассортимент продукции, а продукция из разных материалов, форм и размеров требует разных источников света, камер и алгоритмов.
Визуальное обнаружение изображений Keye AI имеет определенную степень совместимости, но эти два продукта сильно различаются, и добиться полной совместимости также сложно. Оборудование для визуального контроля крышек для бутылок совместимо с двумя продуктами с разницей в высоте не более одной трети и разницей в ширине не более половины, при этом крышки неправильной формы отсутствуют. Если разница в высоте или ширине слишком велика, использование одного и того же оборудования для проверки повлияет на конечное заводское качество. Индивидуальные решения, основанные на характеристиках продукта, необходимы для обеспечения заводского качества продукта.
Вопрос: Приведет ли установление чрезмерно высоких стандартов тестирования к низкой доходности?
Да.
Некоторые компании-производители при покупке систем визуального контроля не устанавливают требования к контролю, исходя из фактической ситуации и стандартов приемки предприятия, а вместо этого используют теоретические стандарты для разработки стандартов контроля. Наконец, при отладке и запуске выяснилось, что процент текучести слишком низок, а система визуального контроля недостаточно точна. На самом деле, такого рода проблемы связаны с использованием бесполезных сверхвысоких стандартов. Предприятия должны разрабатывать стандарты тестирования, основанные на реальных ситуациях, соответствующим образом увеличивать количество элементов тестирования, чтобы улучшить стандарты тестирования, улучшить качество продукции и поддерживать конкурентоспособность на рынке.
Вопрос: Отражается ли ценность систем визуального контроля только в снижении затрат на рабочую силу?
Нет, это не так. Комплект оборудования для визуального контроля с использованием искусственного интеллекта не только экономит трудозатраты, но и снижает эксплуатационные расходы предприятий. Для повышения эффективности предприятия часто выбирают автоматизированное оборудование для замены ручного труда, что не только повышает производительность и качество, но и снижает эксплуатационные расходы. Оборудование для визуального контроля изображения с искусственным интеллектом Keye на одной производственной линии может помочь предприятиям сэкономить 3-5 проверяющих сотрудников и обеспечить единые стандарты качества продукции, повышая узнаваемость предприятия среди клиентов. С точки зрения эксплуатационных расходов более важную роль сыграло визуальное обнаружение изображений с помощью искусственного интеллекта Ки. Например, визуальный осмотр бутылок позволяет напрямую продавать квалифицированную продукцию после проверки, а удаленную дефектную продукцию можно подвергнуть дальнейшей переработке или использовать повторно. Ценность продукта можно диверсифицировать и максимизировать.
Вопрос: Можно ли использовать визуальную систему для высокой производительности?
Предлагается к использованию, но это зависит от деловой ситуации предприятия.
Большая производительность действительно больше подходит для выбора системы визуального контроля. Из долгосрочной стратегии развития предприятий ручное тестирование имеет ограниченную скорость, низкую эффективность и больше подходит для использования автоматизированного оборудования для тестирования в больших количествах.
Хотя некоторые отдельные продукты имеют низкую ценность, использование ручного визуального контроля может привести к пропущенным или ложным проверкам. Если продукция окажется в руках перерабатывающих предприятий и не будет соответствовать стандартам, они могут решить вернуть ее, что приведет к определенным убыткам для предприятия. Со временем это не способствует долгосрочному развитию предприятия. Поэтому, когда объем производства продукции предприятия велик, рекомендуется выбирать оборудование для визуального контроля. Одна инвестиция может принести пользу предприятию на всю жизнь.
Поэтому выбор предприятиями оборудования для визуального контроля ИИ не является прямым проявлением высокого качества. Только разумно используя системы визуального контроля искусственного интеллекта для контроля качества продукции и эффективного устранения оттока бракованной продукции, мы сможем избежать жалоб со стороны конечных потребителей и завоевать их доверие к предприятию.